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Abstract-The transfer function between the mass flux on a microelectrode and the velocity gradient at the 
wall is numerically determined. A direct experimental measurement of this transfer function is performed on 
one hand for a modulated pipe flow and on the other hand for the modulated flow due to a rotating disk. In this 
last case, the accuracy of the data gives a good confirmation ofthe theory in themid-frequency range and shows 
clearly a deviation, appearing in the high-frequency range, due to the fact that the electron transfer is not 

infinitely fast. 

1. INTRODUCTION 

ELECTROCHJZMICAL probes which consist of microelec- 
trodes acting as pure mass sink areas in the presence of a 
fast redox system, have been intended so far for 
hydrodynamical investigations, for instance to study 
the turbulent velocity gradient fluctuations near a wall 
[l-S], or for a direct comprehension of transient mass 
transfer phenomena occurring in pulsating blood 
circulation [9]. As to the former application, it is known 
that in the framework of a linear theory and assuming 
the time-dependent fluctuations as ergodic and the 
system as stationary from a statistical standpoint, the 
power spectrum density (PSD) of the mass flux Wrand 
that of the velocity gradient &are linked through the 
following relationship [lo, 1 l] : 

w = llwf)l12w, (1) 

For both applications, it is therefore important to 
determine accurately the transfer function H( jf) which 
represents formally the linear response of the time- 
dependent mass transfer rate 7 to a sine-wave 
modulation of low level of the wall velocity gradient d. 
This is a similar problem to that of hot-wire 
anemometry, but owing to the high value of the 
Schmidt number SC (= v/D) in a fluid, the cut-off 
frequency of the mass transfer electrochemical probes is 
expected to be significantly lower than that of the 
thermal probes and hence a detailed knowledge of 
function H( jf) is needed. H( jf) had been previously 
calculated either numerically [12-161 or analytically 
[12, 16, 171. 

In the earlier works, devoted primarily to blood 
circulation [9], the theoretical correlations were 
relative to pipe flows and indicated a reduction of the 
data by a dimensionless frequency Sn * SC s 1+2/3 
depending on the Stokes number Sn (= R*w/v; R pipe 
radius and w = 27cf) and on a dimensionless width I+ 
of the active sensor (= 1/[2R * Re SC] ; 1 being the sensor 
dimension along the axis direction of the tube and Re 

the Reynolds number). Direct measurements by the 
polarographic technique in pipes with sinusoidally- 
modulated wall velocity gradients or pressure 
gradients, displayed data at variance with the analysis 
[9] or in a relatively satisfactory agreement [14] 
though some discrepancies in the latter work arose for 
the phase lag when a constant mass flux is chosen as 
boundary condition. 

Fortuna and Hanratty provided an indirect 
verification ofthe variations ofH( jf) with frequency by 
considering, as perturbating flow, the turbulence itself 
and by analyzing the PSD of the mass transfer 
fluctuations, in a frequency range where the velocity 
spectrum was assumed as flat [12]. More recently, the 
calculations have been improved by taking into 
account the diffusion term in the longitudinal direction 
(mean flow direction), whose effect must be prevalent at 
the leading edge of the microelectrode [lS]. 

Up to now, however, no conclusive and quantitative 
verification of those calculations has been given, mainly 
because the flow geometry investigated so far-i.e. the 
modulated pipe flow-is of a difficult setting. 

In fact, the problem can be reduced by the use of a 
dimensionless frequency which appeals to local 
quantities such as the probe dimension 1 and the local 
wall velocity gradient Cr, so that any flow geometry 
should yield the same behavior. 

Now, accurate mass transfer studies in modulated 
flow were recently carried out with a rotating disk 
electrode, a system which contains, in addition, a 
modulation of a velocity component perpendicular to 
the wall [ 18-203. 

In this work, we develop, in the first part, the 
numerical calculation for the complete mass balance 
equation at a rectangular microelectrode and, hence, 
deduce the response of a circular microelectrode. 

In the second part, the transient mass transfer data, 
collected for two modulated flow systems, i.e. the pipe 
flow and the rotating disk, are reported and compared 
with the theoretical values. 
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NOMENCLATURE 

A amplitude V0 angular component of the fluid velocity 
c concentration of the electroactive species [cm s-‘1 

[mol crW3] 
VY 

component of the fluid velocity in the 

c, mean concentration of the electroactive direction perpendicular to the wall 
species at infinity [mol cm- 3] [cm s- ‘1 

co mean concentration of the electroactive V.X component of the fluid velocity in the 
species at the interface [mol cmm3] direction parallel to the wall [cm s- ‘1 

C double-layer capacity [Farad] WE power spectrum density of the velocity 
d diameter of circular microelectrode gradient 

Ccml W’ power spectrum density of the mass flux 
diffusion coefficient [cm’ s- ‘1 

T frequency [Hz] 
X coordinate parallel to the wall (see Fig. 1) 

Y coordinate perpendicular to the wall 
f ’ dimensionless frequency, f1”3/D1/3(c?)2/3 (see Fig. 1) 
F dimensionless frequency, w12/D complex variable, kRj3" 
H transfer function, J/L? [see equation (l)] ; electrochemical impedance [Q] 
f Ft [A] Z EHD electrohydrodynamical impedance 

(EHD) 
J diffusion or mass flux [cm-2 s-‘1 Z HD hydrodynamic transfer function 
do, ,#1 Bessel function of the first kind zD diffusion impedance [EJ. 

;Jz 
constant = 66.13 [see equation (17)] Greek symbols 

1 sensor width, [cm] local wall velocity gradient [s-l] 
L sensor length [cm] ; 11 oca constant [see equation (4)] 

i 
dimensionless frequency, w/o E dimensionless velocity gradient [see 
dynamic pressure [N cm-‘] equation (1 l)] 

r radial coordinate [cm] r(4/3) = 0.89298, the gamma function of 4/3 
R pipe radius [cm] Y constant [see equation (23)] 
Re Reynolds number 6 characteristic distance of the thickness 

R, charge transfer resistance [Q] of diffusion layer [cm] 
S Strouhal number, f/a 5 dimensionless axial distance, y/6(x) 
SC Schmidt number, v/D (- l/O’(O)) dimensionless diffusion impedance 
Sn Stokes number, R'wfv P density 
t time [s] V kinematic viscosity [cm’ s- ‘1 
U unsteady component of the velocity in w modulation frequency [rad s- ‘1 

a pipe along the axis direction X dimensionless parameter, d/D. 
[cm s-l] 

U mean value of the velocity in a pipe Superscripts 
along the axis direction [cm s- ‘1 - steady state 

V, radial component of the fluid velocity - unsteady component 

[cm s- ‘1 + dimensionless parameter. 

2. STATEMENT OF THE PROBLEM 

The concentration in the diffusion layer is governed 
by the unsteady equation of convective diffusion : 

ac - - 
%+v-grade = DV’c. 

(2) 

The problem can always be reduced into a two- 
dimensional form by considering a rectangular 
microelectrode embedded in the wall of length L and FIG. 1. Diffusion boundary layer over a rectangular 

width l(L >> I), with a local system of coordinates microelectrode. For a pipe flow /I = 0. For the flow due to a 

attached to the probe and such that its width is 
rotating disk /I < 0 and in this last case the arrows indicate the 

following the mean flow direction (Fig. 1). 
direction of the velocity components. In some particular flows, 
as for examnle. the flow downstream a cvlinder r61. D mav be 

In this configuration, the concentration derivatives 
. , 

positive. _ - _” . 
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with respect to the transverse direction are a zero value 
and the convective term;.grad c is reduced to 

where y is the distance from the wall and x is a 
coordinate along the local streamline. 

If the dimensions of the microelectrode are small 
enough, we may assume that the gradient ofthe velocity 
component parallel to the wall is constant on the 
microelectrode area and that v, is proportional to y in 
the diffusion layer above the microelectrode : 

v, = 4x, t)Y (3) 

and from the continuity equation : 

ay = Rx, GY2. (4) 

In the particular case of a bidimensional flow /I(x) = 
- 1/2(doc/dx), but this last relation is not verified for a 
three-dimensional flow as, for example, the flow due to 
a rotating disk. 

For each frequency w/2x, every time-dependent 
parameter may be written in the following form : 

X = R + real (2 exp jot} (5) 

8 may be a complex quantity. 
For a low-amplitude modulation of the velocity 

perturbation lo?] << &and #I << pthequadratic terms are 
negligible and the unsteady part of the convective 
diffusion equation is : 

= _&~a" -fly2 a”. (6) 

ax ay 
For a microelectrode, Mollet et al. [21] showed that 

the condition, @1/a] << 1, is equivalent to the condition 

ac ac 
“‘ay ” "x~' 

so for a microelectrode small enough equation (6) 
becomes : 

_ 
jwF+Zy E -D 

a9 a2c" ( > _ ac 
-g$+dy2 = --aY ax’ (7) 

Ling [22] normalized all the distances by using the 
width 1: x+ = x/l, y + = y/l. 

= -cy+ ?& (8) 

In the stationary case, only one dimensionless 
parameter appears : x = d2/D and Ling [22] had 
shown that for d2/D > 5000 the diffusion in the x 
direction can be neglected. 

In the non-stationary case a second dimensionless 
parameter appears : F = o12/D. 

FIG. 2. Numerical calculation ofthe amplitude A of the transfer 
function H vs the dimensionless frequency f ‘. The asymptotic 
behavior A = 0.66/f +“’ is indiscernible at high frequencies 

from the numerical calculation for &/D > 1000. 

2.1. Numerical integration 
The unsteady equation of convective diffusion (6) is 

numerically integrated by using Newman’s method 
[23,24]. The integration is done, after modification of 
the equation (6) by the dimensionless parameter: 
< = y/6(x), where 6(x) is a distance characteristic of 
the thickness of the steady-state diffusion layer [21, 
251: 

a(x) = (Fy’3 (exp F -I>“‘. (9) 

With the dimensionless parameter 5, the equation 
becomes more complicated but the integration may be 
done with a constant mesh size. 

The results are given in Fig. 2; the amplitude of the 
transfer function H = J/E is normalized by its value 
when the frequency tends towards zero. 

For d2/D > 1000 all the curves are reduced by a 
dimensionless frequency f ’ where : 

f 12/3 

f'=+TgE 

and a good agreement is found with the previous 
integration [12, 161. We notice that f' may be 
expressed as a combination of the two dimensionless 
parameters defined from (8) (f + = F~-~‘~/274 or f + 
may be also expressed by using the Strouhal number 
S = f/c? (f’ = sp). 

When al’/D decreases, different curves are obtained 
and the slope in the high-frequency range increases 
from-1.5. 

The instantaneous wall velocity gradient a” is not 
accessible by usual techniques and will be therefore 
experimentally referred to a phase origin correspond- 
ing to the location of the flow perturbation. 



38 A. AMBARI, C. Dmmns and B. TRIBOLLET 

In a linear theory, the dimensionless perturbation 
E(W) = E/ciis such that l&(w)1 << 1 as assumed above. E(O) 
is a complex number and its phase shift is a function of 
the flow. The exact determination of E(W) will be given 
for each particular flow in the following. 

2.2. Asymptotic behavior of transfer function H 
In this section, high-frequency and low-frequency 

regimes will be defined with respect to f +. From Figure 
2, the low-frequency regime is valid for f + < 0.1 and 
the high-frequency regime corresponds to f + > 2. 
These values are corroborated by the phase shift 
variations. For the low-frequency range considered, the 
instantaneous fluxes and velocity gradient are in phase 
and for the high-frequency range a limiting phase shift 
of - 3~14 is observed. 

In a previous work [26] asymptotic behaviors of the 
mass transfer responses for a rotating disk electrode 
have been calculated in the low- and high-frequency 
domains, respectively. These results may be extended to 
the microelectrodes when the diffusion in the x 
direction is neglected and when the concentration of 
electroactive species at the interface is zero. 

In the low-frequency range, i.e. in quasi-steady state, 
the instantaneous fluxes and velocity gradient are in 
phase. The overall flux on the microelectrode is from 
[26] : 

6(x) is given by (9). The quantity 381/E is negligible for a 
disk, and is equal to zero for a pipe flow, and equation 
(9) becomes : 

(12) 

and then : 

H _ <JLF> IJ cm--oI 
LF - -- 

w - 2c( I(4/3) 
t13) 

In the high-frequency range, from [26], the local flux 
may be expressed by : 

and the transfer function for the microelectrode is : 

HHFZLD 1 a5 
B s I LD cm -co .1,2 - dx=_(j-_ 

o aYo 8 l-(4/3) ’ 

The integral f. dx/d4(x) diverges, this problem was 
not mentioned in the previous works. This divergence 
occurs because a2c/ax2 cannot be neglected as regards 
to a2c/ay2 close to the leading edge of microelectrode, 
and the actual concentration profile would be of the 
power law type but with an exponent smaller than l/3. 

From the numerical integration (Fig. 2), it emerges 

Oh6 H HF 
H -fT’ 
LF 

(16) 

Returning to the HF solution, it can be inferred, that, 
on the basis of dimensional arguments, HHF takes the 
following expression : 

HHF = KLD rt4,3) 
c,--cOj1~2 (!!y"l (&>,,' (17) 

with K = 66.13. 
The cut off frequency defined by H,,/HLF = 1 is 

f: = 0.758. 

2.3. Circular microelectrode 
In order to determine the frequency response of a 

circular microelectrode (diameter d) from the 
asymptotic behavior established for a rectangular 
microelectrode, we used the method described in [21] 
for the stationary case. 

For a rectangular microelectrode as described at the 
beginning of this paper, all concentration derivatives 
with respect to the z direction are a zero value; for a 
circular microelectrode we assume that the diffusion in 
the z direction may be neglected. This assumption was 
verified in the stationary case [21]: on the basis of 
experimental considerations we will show further that 
it can be extended to the transient case. 

The length L is substituted by t and the value dJ is 
integrated on the overall surface of the circular 
microelectrode : 

l/3 

f&Z / r\2/3 

x2Jo (2&-t’) dt (18) 

(J,,) = 0.2019&(O) $($ (E)1’3D2’3d5’3. (19) 

By the same procedure one finds : 

,-- -co D7/6(,$4/3d2/3 
(.THF) = 3.92105j1i2s(w) r(4,3) ,$I2 (20) 

and therefore 
4/3 Z/3 

[(&,)I = 2.7726&(o) G D7’6($2 d . (21) 

The following expression is then obtained for the 
circular microelectrode : 

I<J”,>I E(W) D”‘o7 
- = 0.8719 - p. 
i<JLF>I s(O) f 3’2d 

(22) 

By assuming the same relationship as that given in 
equation (16), one has to consider the circular 
microelectrode as a rectangular one whose width 
would be equal to 0.756d. In the stationary case, the 
behavior of a circular microelectrode was similar to 
that of a rectangular one whose width was set equal to 
0.81d [21]. 
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3. EXPERIMENTAL RESULTS AND 
DISCUSSION 

3.1. Modulated pipeflow 
We first studied the response of an electrochemical 

circular probe embedded in a circular pipe to a sine- 
wave modulation of the flow velocity. 

The fluid was circulated through a circular pipe of 
diameter 2R = 2.5 cm and length 3 m between two 
tanks byimposingaconstant andcontrolledpressureP 
in the upstream tank (see Fig. 3) whereas the 
downstream tank was allowed to reach atmospheric 
pressure P,,. Since laminar conditions were required, 
the flow rate was decreased by putting in the upstream 
region a circular disk (1 in Fig. 3) in the cross section of 
the pipe, drilled with small holes (0 = 0.5 mm) 
regularly spaced and the viscosity was increased as well 
by adding glucose to the fluid. The distance between the 
upstream disk and the downstream electrochemical 
test section was large enough so that a completely 
Poiseuille profile was established. The flow rate was 
modulated by means of a piston submitted to a linear 
sinusoidally-alternating motion provided by a pushing 
rod (see Fig. 3). 

The flow rate was measured by using a flowmeter 
(CROUZET). In transient conditions, the fluctuating 
flow rate was found to be practically in phase with the 
fluctuating velocity along the symmetry axis ofthe pipe. 
The electric signal delivered by this device triggered the 
generator of a transfer function analyzer (1172 
SOLARTRON): the transfer function between the 
modulated response of the diffusion flux and the 
instantaneous velocity on the pipe axis was then 
analyzed as function of frequency. However, this 
transfer function equal to j/ti (axis) deviates from the 
calculated transfer function j/i given by the numerical 
analysis. Indeed, since 

J/o? = {J/zX(axis)} {G(axis)/di}, 

one has to calculate the transfer function u”(axis)/o? This 
was done according to the work by Uchida [27], who 
calculated the modulated velocity in a circular pipe due 
to a fluctuating pressure gradient of the form : 

83 G - = y ax exp jot 
ax 

with y << 1. (23) 

He then found : 

(24) 

where r is the radial distance starting from the pipe axis ; 
k* = W/V; p is the density; a$/ax the mean pressure 
gradient. $9 is the Bessel function of the first kind. 

It readily emerges that : 

WW _ R Cl -/&I 
oi ZfI(4 

(25) 

with z = kRj3/*. 
The argument of the complex variable z has a 

constant value of 3n/4 and therefore, any Bessel 
function of the first kind can be expressed in terms of the 
Kelvin functions ber and bei : 

X(z) = her(z) +j * bei 

which have been tabulated in [28]. 
The transfer function u’(axis)/& is plotted in Bode 

coordinates in Fig. 4. A limiting phase shift value of 45” 
is reached. 

The electrochemical reaction due l to the tri- 
iodide/iodine system (I; +2e- 4 31-) evolved on a 
circular platinum microelectrode (d = 0.5 mm) embed- 
ded flush with the insulated wall of the pipe. The 
limiting diffusion current corresponding to the re- 
duction step of the reaction was measured by means of 
a current-to-voltage converter (which provides a less 

1 
TRANSFER 

v, = R(I+;) 
Ox FUNCTION 

oy ANALYSER 

SOLARTRON 1172 

FIG. 3. Experimental device for the pulsating flow in a pipe flow. 
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I I I I I I I 

Dimensonless Frequency CJ*=&/~)“~ 

FIG. 4. Theoretical hydrodynamic transfer function between 
the velocity on the axis of the pipe and the wall velocity 
gradient. The amplitudes are normalized by the value of the 

amplitude when the frequency tends towards zero. 

noisy signal than that observed with a usual 
potentiostat (Fig. 3). 

The physicochemicai parameters of the solution 
were determined as : 

v = 2.1 x 10-2cmz s-l 

D = 4.48 x 10m6 cm2 s-i. 

Three experiments performed at ii = 5.67, 8.1 and 
8.9 cm s-l enabled us to compare the experimental 
response with the theoretical values given in the first 
section. 

In Fig. 5 we represented the phase shift vs the 
dimensionless frequency f ‘. 

As predicted from the theoretical section, we assume 
that a circular microelectrode is equivalent to a 
rectangular microelectrode of width 1 = 0.756d. 

A certain scattering of the data is observed due to the 
difficulty in performing such measurements at 
frequencies below 1 Hz (this corresponds to a low 
rotation frequency of the DC motor which drives the 
piston). However, the theoretical curve (full line) passes 
through experimental data and the agreement is quite 
satisfactory. When one tries to analyze the amplitude 
data (Fig. 6), a problem arises due to the fact that low- 
frequency modulations could not be achieved 
so that the low-frequency plateau was not obtained 
and the normalization procedure failed. However, the 
asymptotic behavior of the amplitude A at high 
frequencies-i.e. a power law correlation of the type 
A~f+-i.~_ is consistent with the theoretical 
predictions (the values of oSl’/D investigated were higher 
than 104) and tends to indicate a low influence of the 
longitudinal term in the Laplacian [equation (7)]. 

3.2. Modulatedflow at a rotating disk 
The use of a modulation flow technique has been 

recently developed in electrochemistry to analyze the 
coupling between mass transfer and the interfacial 
kinetics associated to the electron transfer [ 18-201. It 
consists in studying the frequency response of the 
diffusion flux to a low-level sinusoidal speed 
modulation of the disk superimposed to a time-average 
value. 

The transfer function experimentally determined is 
the ratio .i/fi where fi is the amplitude of the velocity 
modulation as expressed by equation (5). 

As previously done for the pipe flow, this 
experimentally accessible quantity differs from the 

150" 
I I I I I I I 

f.t2’3 
Dmensionless Frequency I+= w 

FIG. 5. Experimental phase shift of the mass transfer attenuation H(2nf) vs the dimensionless frequency for 
pulsating pipe flow. 

‘the 
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predicted quantity H = .ij,” by an additional transfer 
function Z,, = E/b with 

Z,, is a complex quantity proportional to &u)/E(O). 
The fluctuating velocity components I& 5, and I?~ were 
numerically calculated for a rotating disk in ref. [20]. 
Analytical expressions had been previously established 
either in the low-frequency [29] or in the high- 
frequency ranges [30]. 

In the local system of coordinates where x defines the 
tangential direction to the streamline, then : 

v, = (UT2 + u,2y 

and 

(26) 

where o, and vg are the usual radial and tangential 
velocities in a cylindrical system of coordinates. 

The variations of c(p)/&(O) with the dimensionless 
frequency p( = w/Q), were calculated by means of 
equation (26) from the theoretical values of cr and G,, 
predicted in ref. [20], and are reported in Fig. 7 : from 
[29, 301, we deduced approximate expressions of 
e(p)/&(O) for the low-frequency range 

dP) 
E(O)p+Ll 

‘v 1 +O.l2808jp (27) 

and for the high-frequency range : 

m 0.3760 

E(O)= 
O&39& +--- 

fi 

+j 
0.376 0.3247 

0.4539&-- -- 
h p 

. (28) 

The electronic device used for the control of the 
limiting diffusion currents is the same as that 
schematized in Fig. 3 and the mechanical set-up has 
been described in [31]. 

Hydrodynamic transfer function Z,,. For the most 
remote electrode from the rotation axis, the term 

(d/r) 2/3 is very small and over a meaningful range of p, 

The modulation is generated by a DC motor, the 
angular velocity of which is servo-controlled to within 
0.1%. This velocity can be changed very quickly due to a 
very low inertia; frequency modulations as high as 
130 Hz could be reached with a modulation ratio 
@a of 10% at any time-average value fi between 20 
and 5000 rpm. 

f + remains much smaller than one. Therefore, 3/E 
introduces no attenuation and the observed response 
comes mainly from Z,,. 

Since no experimental checking of the validity of the 
theoretical prediction concerning the transfer function 
Z,, for a rotating disk has been given so far, it was 
necessary to devise appropriate experimental con- 
ditions so as to separate the effects of Z,,, = J/a and 
f/E. 

In Fig. 7, the experimental amplitude and phase shift 
of J/a for the microelectrode (d = 80 pm ; r = 27 mm) 
in a solution of KC1 (M) at 20°C (SC ‘v 1200) have been 
plotted and compared to the theoretical variation of 
z . The agreement is excellent, especially for the 
a:plitudes up to p Y 10 whereas the phase shift 
displays a divergence at lower p values. The deviation 
appearing beyond, marks the beginning of the 
attenuation of J/a. If the Schmidt number is increased, 
with the same geometry, the mass transport 
attenuation occurs sooner as displayed in Fig. 8 where a 
5&50 water-glycerol mixture was used (SC N 22 000). 

For a rotating disk, the velocity gradient is c? = Mass transfer attenuation H = J/L?. Microelectrodes 
0.8 Q312 v-1’2 r and then it is convenient to put the located near the rotation axis were also used, in order to 
general dimensionless frequency f’ [equation (lo)] increase the term (d/r) 2/3. However in all cases, the effect 

I\ I I I I I 
\ 

\ 
01 

+ h,o + lo 
x + \“O 

x \O 
+ \oo 
“+,\ o. 

+\ 0 
\O 

+X\ O. 
\ 

“X\ Oo 
xl 

\5lope- 

Xl 
\ 

\ 

\ 
0.1 I I I I I I \ 

0.2 05 1 2 5 10 

FIG. 6. 

in the following form : 

. 

In contrast, it must be emphasized that Z,, is only 
dependent on p. 

We therefore embedded, in an insulated disk plane, 
microelectrodes of different diameters (50 /1 < d < 
150 p) and distances from the rotation axis (1.5 mm < 
r < 27 mm). 

The Schmidt number was also increased by mixing 
glycerol with the solution which increased the viscosity. 
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a 

$ l.S_ 
J 

.‘- 
a 
E ‘ar - C r ; rn 
4 

0.75 _ 

o Numerical integration 

. Experiment01 

0.5, I I I I I I I I 
1 1.5 2 3 5 7.5 10 15 20 30 

p dimensionless frequency 

FIG. 7(a). Amplitude of the theoretical hydrodynamic transfer function Z,,,(O) [equation (28)]. 0 
ExperImental data of ZEHD with d = 8 x lo- 3 cm, r = 2.7 cm, SC = 1200. The amplitudes are normalized by 

40). 

50. 
I I I I I I I I 

40_ 

al 30- 
0 

0 0 .* ..o**..* 

.- 
$20, 

0 0. l * 
. l *. 

% l 
al . 
J) 

rOlO_.* 
0. a Numerical integration 

CL 00 . Experimental 

0. I I I I I I I I 
1 1.5 2 3 5 7.5 10 15 20 30 

p dimensionless frequency 

FIG. 7(b). Phase shift of the same quantities as in Fig. (a). 

of zkm could not be disregarded and the data were 
therefore corrected from its effect so as to analyze the H 
variations alone. These data are plotted in Fig. 9 vs f ‘. 
In a significant range of frequency there is a very 
satisfactory fit of the theoretical curve to Fhe 

experimental data and this last set of measurements 
definitely yields a good confirmation of the theoretical 
predictions. 

However, in the high-frequency range, the experi- 
mental data fall well below the theoretical curve, a fact 
which had been previously noticed with a rotating disk 
electrode [20]. Indeed, up to now, we assumed the 
instantaneous diffusion current I as proportional to the 
diffusion flux J, i.e. the electron transfer is infinitely fast 
with respect to the mass transfer process in non-steady- 
state conditions. In other words, this means that the 
measured overall transfer function i/n contains 

1 15 2 3 5 75 10 15 20 

p dimens,onless frequency 

FIG. 8. Determination of the mass transfer attenuation H from 
the experimental measurement of Z,,, (= J/a) and by using 

the Z,, values. 
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.d:0050,R=27,5c=22000 

.d~0.0150,R:O.15,Sc~22000 

o d =0.011,R:0.175,Sc~1300 

dimensionless frequency f’ 

FIG. 9. Variations ofthe amplitude of the mass transfer attenuation H obtained from the Z,,, measurements in 
different experimental conditions vs the dimensional frequency f’. 

another intermediate transfer function r1.i’ which is a 
pure real number only at zero frequency or at low 
frequencies : such a behavior had not been considered 
in the previous work dealing with electrochemical 
experiments. 

The analysis derived for a rotating disk electrode in 
[20], led to the following equation and can be extended 
to the microelectrode : 

7 i 1 zD _-_ - 
J-5 l+joC(R,+Z,) Z (30) 

C is the double-layer capacitance with a usual value of 
the order of 50 PF cm-*. R, is the charge-transfer 
resistance which decreases as the rotation is increased. 
Z, is the diffusion impedance and can be written as 

&[-&“‘] 
where R,, the diffusion resistance, is such that R, >> R,. 
The expression of [- l/@(O)*(w)] is given in [32, 333 
and in particular : 

[ -&I+~)] -+ I74/3) when o +O 

[-A(-)]-0 when w-co. 

4. CONCLUSIONS 

In the present work, it has been shown that 
electrochemical probes based on a mass transfer 
measurement are useful tools intended for the analysis 
of wall velocity gradient instabilities provided that their 
transfer function in a linear sine-wave modulated flow 
is known. This function was calculated in the general 
case of a two-dimensional velocity field near the wall 
and by considering the complete mass balance 
equation. 

It was demonstrated that the numerical coefficient 
allowing the formal equivalence ofa circular probe with 
a rectangular one is somewhat smaller than that 
calculated in steady flow conditions. 

Two modulated flows were investigated: the pipe 
flow and the flow around a rotating disk. The frequency 
analysis of the experimental transfer function fulfilled 
very satisfactorily the theoretical predictions especially 
for the rotating disk flow, the experimental conditions 
of which could be very well controlled. 

However, and at variance with the steady-state 
problem, the electron transfer process of the 
electrochemical reaction could not be considered as 
infinitely fast with respect to the mass transfer process 
at the highest frequencies investigated. This fact was not 
mentioned so far in the earlier contributions and some 
suggestions have been given in this paper in order to 
predict the observed deviations. A more quantitative 
treatment involving the electrochemical parameters of 
the reaction used is in progress. 
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REPONSE EN FREQUENCE DU TRANSPORT DE MATIERE 
SUR DES SONDES ELECTROCHIMIQUES EN ECOULEMENT MODULE 

R&sum&-La fonction de transfert entre le flux de mat&e sur une microelectrode et le gradient de vitesse a la 
paroi est determinee numbriquement. Une mesure experimentale directe de cette fonction de transfert est 
effectute dune part pour l’ecoulement module dans un tuyau et d’autre part pour l’tcoulement module au 
voisinage dun disque tournant. Dans ce demier cas, la precision des resultats donne une bonne confirmation 
de la theorie dans le domaine des frequences intermidiaires. L’ecart observe dans le domaine haute frequence a 

ett attribut au fait que le transfert d’electrons n’est pas infiniment rapide. 

FREQUENZGANG DES STOFFTRANSPORT AUF 
ELECTROCHEMISCHEN SONDEN FUR ZEITLICH MODULIERTE STROMUNGEN 

Zusammenfassung-Die Ubertragungsfunktion zwischen dem StoffluB auf einer Mikroelectrode und dem 
Geschwindigkeits-Gefiille bei der Wand wird numerisch erechnet. Die experimentelle Messung dieser 
Funktion erfolgte durch zwei zeitlich modulierte Striimungen, einerseits durch eine Rohrstrijmung und 
andererseits in der NBhe einer rotierenden Scheibe. Die Genauigkeit der Ergebnisse des letzteren Falls 
bestatigt unsdie Giiltigkeit der Theorie in Bereich der Zwischenfrequenz. Im Hochfrequenz-bereich kann man 
eine Abweichung im VerhHltnis zur Theorie feststellen. Diese Abweichung ist darauf zuriickzufiihren, daB der 

Electronentransfemicht unendlich schnell ist. 



Frequency response of the mass transfer rate 

YACTOTHAII XAPAKTEPMCTHKA CKOPOCTM MACCOIIEPEHOCA rIPbi 
MOJ(YJIMPOBAHHOM TE9EHlSi BBJIki3ki 3JIEKTPOXHMMYECKklX AATWiKOB 

AHHoTausn-AaHo wcnennoe onpenenenae nepexonnoii i$ymwiU Memny UOTOKOM h4auzbI Ha MNKP~- 

WICKTpOlle II rpaJVieHTOM CKOPOCTH Ha CTeHKC. ~pOB’%ICHO UpKMOe 3KCUepETM’ZHTaJIbHOe Ei3MepeHSie 

3TOji @j’HKUkiH KaK LlJIR MO.4yJltfpOBaHHO~O TeYeHEiK B Tpy6e, TaK B &WI MOnyJI&fpOBaHHOrO Te’iCHEiR, 

HHU,‘UHpOBaHHOrO BpaWaHJILWMCK IIBCKOM. TOYHbIe ,UaHHbIC, UO,IyYCHHbIC llJIK JViCKa, XOPOUIO UOU- 

TBCpXCUaEOT p3yJIbTaTbI TeOpCTH’i’ZCKSiX PaCYCTOB B o6nacTa CpCllHHX =IaCTOT H CBUiWTCJIbCTBYEOT 0 

HaSIIISBII IBHOrO OTKJIOHCHWI B BbICOKOqaCTOTHOM nHaUa30He 113-38 KOHC’iHOii CKOPOCTH UepeHOCa 

3JIeKTpOHOB. 
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